...

Matriz

RESUMO: A definição do arquivo de entrada segue a configuração matricial adotada por Taillard (1993), apresentada como:

a matriz de dados é subdividida em tempos (TJmEn) e maquinas (MJmEn). Onde T representa o tempo da operação, J o job, E a etapa do roteiro. Essa configuração permite uma interpretação compacta do roteiro de fabricação para cada job e seus respectivostempos de processamento.

Adams, Balas and Zawack
Instance Jobs Machines Lower bound Upper bound
abz5 10 10 1234 1234
abz6 10 10 943 943
abz7 20 15 656 656
abz8 20 15 648 665
abz9 20 15 678 678
Fisher and Thompson
Instance Jobs Machines Lower bound Upper bound
ft06 6 6 55 55
ft10 10 10 930 930
ft20 20 5 1165 1165
Lawrence
Instance Jobs Machines Lower bound Upper bound
la01 10 5 666 666
la02 10 5 655 655
la03 10 5 597 597
la04 10 5 590 590
la05 10 5 593 593
la06 15 5 926 926
la07 15 5 890 890
la08 15 5 863 863
la09 15 5 951 951
la10 15 5 958 958
la11 20 5 1222 1222
la12 20 5 1039 1039
la13 20 5 1150 1150
la14 20 5 1292 1292
la15 20 5 1207 1207
la16 10 10 945 945
la17 10 10 784 784
la18 10 10 848 848
la19 10 10 842 842
la20 10 10 902 902
la21 15 10 1046 1046
la22 15 10 927 927
la23 15 10 1032 1032
la24 15 10 935 935
la25 15 10 977 977
la26 20 10 1218 1218
la27 20 10 1235 1235
la28 20 10 1216 1216
la29 20 10 1152 1152
la30 20 10 1355 1355
la31 30 10 1784 1784
la32 30 10 1850 1850
la33 30 10 1719 1719
la34 30 10 1721 1721
la35 30 10 1888 1888
la36 15 15 1268 1268
la37 15 15 1397 1397
la38 15 15 1196 1196
la39 15 15 1233 1233
la40 15 15 1222 1222
Applegate and Cook
Instance Jobs Machines Lower bound Upper bound
la01 10 5 666 666
la02 10 5 655 655
la03 10 5 597 597
la04 10 5 590 590
la05 10 5 593 593
la06 15 5 926 926
la07 15 5 890 890
la08 15 5 863 863
la09 15 5 951 951
la10 15 5 958 958
la11 20 5 1222 1222
la12 20 5 1039 1039
la13 20 5 1150 1150
la14 20 5 1292 1292
la15 20 5 1207 1207
la16 10 10 945 945
la17 10 10 784 784
la18 10 10 848 848
la19 10 10 842 842
la20 10 10 902 902
la21 15 10 1046 1046
la22 15 10 927 927
la23 15 10 1032 1032
la24 15 10 935 935
la25 15 10 977 977
la26 20 10 1218 1218
la27 20 10 1235 1235
la28 20 10 1216 1216
la29 20 10 1152 1152
la30 20 10 1355 1355
la31 30 10 1784 1784
la32 30 10 1850 1850
la33 30 10 1719 1719
la34 30 10 1721 1721
la35 30 10 1888 1888
la36 15 15 1268 1268
la37 15 15 1397 1397
la38 15 15 1196 1196
la39 15 15 1233 1233
la40 15 15 1222 1222
Storer, Wu and Vaccari
Instance Jobs Machines Lower bound Upper bound
swv01 20 10 1407 1407
swv02 20 10 1475 1475
swv03 20 10 1398 1398
swv04 20 10 1464 1464
swv05 20 10 1424 1424
swv06 20 15 1630 1671
swv07 20 15 1513 1594
swv08 20 15 1671 1752
swv09 20 15 1633 1655
swv10 20 15 1663 1743
swv11 50 10 2983 2983
swv12 50 10 2972 2977
swv13 50 10 3104 3104
swv14 50 10 2968 2968
swv15 50 10 2885 2885
swv16 50 10 2924 2924
swv17 50 10 2794 2794
swv18 50 10 2852 2852
swv19 50 10 2843 2843
swv20 50 10 2823 2823
Taillard
Instance Jobs Machines Lower bound Upper bound
ta01 15 15 1231 1231
ta02 15 15 1244 1244
ta03 15 15 1218 1218
ta04 15 15 1175 1175
ta05 15 15 1224 1224
ta06 15 15 1238 1238
ta07 15 15 1227 1227
ta08 15 15 1217 1217
ta09 15 15 1274 1274
ta10 15 15 1241 1241
ta11 20 15 1357 1357
ta12 20 15 1367 1367
ta13 20 15 1342 1342
ta14 20 15 1345 1345
ta15 20 15 1339 1339
ta16 20 15 1360 1360
ta17 20 15 1462 1462
ta18 20 15 1377 1396
ta19 20 15 1332 1332
ta20 20 15 1348 1348
ta21 20 20 1642 1642
ta22 20 20 1561 1600
ta23 20 20 1518 1557
ta24 20 20 1644 1644
ta25 20 20 1558 1595
ta26 20 20 1591 1643
ta27 20 20 1652 1680
ta28 20 20 1603 1603
ta29 20 20 1573 1625
ta30 20 20 1519 1584
ta31 30 15 1764 1764
ta32 30 15 1774 1784
ta33 30 15 1788 1791
ta34 30 15 1828 1829
ta35 30 15 2007 2007
ta36 30 15 1819 1819
ta37 30 15 1771 1771
ta38 30 15 1673 1673
ta39 30 15 1795 1795
ta40 30 15 1651 1669
ta41 30 20 1906 2005
ta42 30 20 1884 1937
ta43 30 20 1809 1846
ta44 30 20 1948 1979
ta45 30 20 1997 2000
ta46 30 20 1957 2004
ta47 30 20 1807 1889
ta48 30 20 1912 1941
ta49 30 20 1931 1961
ta50 30 20 1833 1923
ta51 50 15 2760 2760
ta52 50 15 2756 2756
ta53 50 15 2717 2717
ta54 50 15 2839 2839
ta55 50 15 2679 2679
ta56 50 15 2781 2781
ta57 50 15 2943 2943
ta58 50 15 2885 2885
ta59 50 15 2655 2655
ta60 50 15 2723 2723
ta61 50 20 2868 2868
ta62 50 20 2869 2869
ta63 50 20 2755 2755
ta64 50 20 2702 2702
ta65 50 20 2725 2725
ta66 50 20 2845 2845
ta67 50 20 2825 2825
ta68 50 20 2784 2784
ta69 50 20 3071 3071
ta70 50 20 2995 2995
ta71 100 20 5464 5464
ta72 100 20 5181 5181
ta73 100 20 5568 5568
ta74 100 20 5339 5339
ta75 100 20 5392 5392
ta76 100 20 5342 5342
ta77 100 20 5436 5436
ta78 100 20 5394 5394
ta79 100 20 5358 5358
ta80 100 20 5183 5183
Yamada and Nakano
Instance Jobs Machines Lower bound Upper bound
yn01 20 20 884 884
yn02 20 20 870 904
yn03 20 20 859 892
yn04 20 20 929 968

Referências

HOORN, J. J. van. The Current state of bounds on benchmark instances of the job-shopscheduling problem. J. Sched., Springer US, v. 21, n. 1, p. 127–128, feb 2018. ISSN 1094-6136. Disponível em: <http://link.springer.com/10.1007/s10951-017-0547-8>.

ADAMS, J.; BALAS, E.; ZAWACK, D. The Shifting Bottleneck Procedure for Job Shop Scheduling. Manage. Sci., v. 34, n. 3, p. 391 401, mar 1988. ISSN 0025-1909. Disponível em: <http://pubsonline.informs.org/doi/abs/10.1287/mnsc.34.3.391>.

LAWRENCE, S. Resource Constrained Project Scheduling. An Experimental Investigation of Heuristic Scheduling Techniques (Supplement). [S.l.]: Carnegie-Mellon University, 1984.

ADAMS, J.; BALAS, E.; ZAWACK, D. The Shifting Bottleneck Procedure for Job Shop Scheduling. Manage. Sci., v. 34, n. 3, p. 391–401, mar 1988. ISSN 0025-1909. Disponível em: <http://pubsonline.informs.org/doi/abs/10.1287/mnsc.34.3.391>.

APPLEGATE, D.; COOK, W. A Computational Study of the Job-Shop SchedulingProblem. ORSA J. Comput., v. 3, n. 2, p. 149–156, 1991. ISSN 0899-1499. Disponível em: <http://pubsonline.informs.org/doi/abs/10.1287/ijoc.3.2.149>.

APPLEGATE, D.; COOK, W. A Computational Study of the Job-Shop SchedulingProblem. ORSA J. Comput., v. 3, n. 2, p. 149–156, 1991. ISSN 0899-1499. Disponível em: <http://pubsonline.informs.org/doi/abs/10.1287/ijoc.3.2.149>.

STORER, R. H.; WU, S. D.; VACCARI, R. New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling. Manage. Sci., v. 38, n. 10, p. 1495–1509, 1992. ISSN 0025-1909.

STORER, R. H.; WU, S. D.; VACCARI, R. New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling. Manage. Sci., v. 38, n. 10, p. 1495–1509, 1992. ISSN 0025-1909.

Yamada, T.; Nakano, R. A genetic algorithm applicable to large-scale job-shop instances.Parallel instance solving from Nat., v. 2, n. January 1992, p. 10, 1992. Disponível em: <http://dblp.uni-trier.de/db/conf/ppsn/ppsn1992.html#YamadaN92>.

Yamada, T.; Nakano, R. A genetic algorithm applicable to large-scale job-shop instances.Parallel instance solving from Nat., v. 2, n. January 1992, p. 10, 1992. Disponível em: <http://dblp.uni-trier.de/db/conf/ppsn/ppsn1992.html#YamadaN92>.

TAILLARD, E. Benchmarks for basic sheduling problems. Eur. J. Oper. Res., v. 64, p. 278–285, 1993.

DEMIRKOL, E.; MEHTA, S.; UZSOY, R. Theory and Methodology Benchmarks for shop scheduling problems. Eur. J. Oper. Res., v. 109, p. 137–14, 1998. ISSN 03772217.